
halem Documentation
Release stable

yourname

Aug 30, 2022

CONTENTS

1 Contents 3
1.1 HALEM . 3
1.2 Contributing . 6
1.3 License . 10
1.4 Credits . 10
1.5 History . 10
1.6 halem . 12

2 Indices and tables 21

Python Module Index 23

Index 25

i

ii

halem Documentation, Release stable

HALEM is a python package for optimizing shipping routes. This package provides an algorithm for optimizing the
route for a given hydrodynamic model.

Welcome to HALEM documentation! Please check the contents below for information on installation, getting started
and actual example code. If you want to dive straight into the code you can check out our `GitHub`_ page.

This package is the result of a graduation study. For the MsC theses See: <Thesis Route optimization in
dynamic currents J.P. van Halem.pdf>.

CONTENTS 1

halem Documentation, Release stable

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 HALEM

This page lists all functions and classes available in the halem module.

1.1.1 Module contents

class halem.BaseRoadmap(number_of_neighbor_layers, vship, WD_min, WVPI, repeat=False, WWL=20,
LWL=80, ukc=1.5, optimization_type=None, nodes_index=None, *args, **kwargs)

Bases: ABC, NodeReduction

Absctract Base class for the Roadmap.

Pre-processing function for the HALEM optimizations. In this fucntion the hydrodynamic model and the vessel
properties are transformed into weights for the Time dependend Dijkstra function.

number_of_neighbor_layers: number of neigbouring layers for which edges are
created. increasing this number results in a higher directional resolution.

vship: (N (rows) * M (columns)) numpy array that indicates the sailing velocity
in deep water. For which N is the number of discretisations in the load factor, and M is the number of
discretisations in the dynamic sailing velocity. For the optimization type cost and co2 N must be larger or
equal to 2.

WD_min: numpy array with the draft of the vessel.
Numpy array has the shape of the number of discretisations in the dynamic sailing velocity

WVPI: Numpy array with the total weight of the vessel.

WWL: Width over Water Line of the vessel in meters

LWL: Length over Water Line of the vessel in meters

ukc: Minimal needed under keel clearance in meters.

repeat: Indicator if the roadmap can be repeated (True / False)
True for hydrodynamic models based on a tidal analysis

optimization_type: list of optimization types.
Excluding one or more not needed optimization types can significantly decrease the size of the preprocess-
ing file

nodes_index: Numpy array that contains the indices of the nodes of the reduced
hydrodynamic model. nodes_index is the output of Roadmap.nodes_index. This option allows you to skip
the node reduction step if this is already done.

3

https://docs.python.org/3.8/library/abc.html#abc.ABC

halem Documentation, Release stable

calc_weights_time(edge, i, j, vship, WD_min, WVPI, self_f, compute_cost, compute_co2,
number_of_neighbor_layers)

Function that retruns the weight of an arc

static compute_co2(travel_time, speed)
Default cost function for co2.

static compute_cost(travel_time, speed)
Default cost function for price.

static fifo_maker(y, N1)
Makes a FIFO time series from a Non-FIFO time series y: Time series N1: Mask file of the time series

abstract load()

load_hydrodynamic()

static nodes_on_land(nodes, u, v, WD)
Standard function that returns itself

parse()

halem.HALEM_co2(start, stop, t0, vmax, Roadmap)
Implementation of the function HALEM_func() for the least pollutant route.

start: (lon, lat) coordinates of the start location stop: (lon, lat) coordinates of the destination location t0: string
that indcates the departure time

(‘day’/’month’/’year’ ‘hour’:’minute’:’seconds’)

vmax: (N (rows) * M (columns)) numpy array that indicates the sailing velocity in deep water.

For which N is the number of discretisations in the load factor, and M is the number of discretisations
in the dynamic sailing velocity

For the optimization type cost and co2 N must be larger or equal to 2.

Roadmap: Preprocessing file that contains the hydrodynamic properties.

halem.HALEM_cost(start, stop, t0, vmax, Roadmap)
Implementation of the function HALEM_func() for the cheapest route.

start: (lon, lat) coordinates of the start location stop: (lon, lat) coordinates of the destination location t0: string
that indcates the departure time

(‘day’/’month’/’year’ ‘hour’:’minute’:’seconds’)

vmax: (N (rows) * M (columns)) numpy array that indicates the sailing velocity in deep water.

For which N is the number of discretisations in the load factor, and M is the number of discretisations
in the dynamic sailing velocity

For the optimization type cost and co2 N must be larger or equal to 2.

Roadmap: Preprocessing file that contains the hydrodynamic properties.

halem.HALEM_func(start, stop, t0, vmax, Roadmap, costfunction)
Base of the functions HALEM_time, HALEM_cost, HALEM_space, HALEM_co2. This function takes the
pre-processing file, start location, stop location, departure time, and sailing velocity and returns the optimized
route.

start: (lon, lat) coordinates of the start location stop: (lon, lat) coordinates of the destination location t0: string
that indcates the departure time

4 Chapter 1. Contents

halem Documentation, Release stable

(‘day’/’month’/’year’ ‘hour’:’minute’:’seconds’)

vmax: (N (rows) * M (columns)) numpy array that indicates the sailing velocity in deep water.

For which N is the number of discretisations in the load factor, and M is the number of discretisations
in the dynamic sailing velocity

For the optimization type cost and co2 N must be larger or equal to 2.

Roadmap: Preprocessing file that contains the hydrodynamic properties. costfunction Costfunction of the route
optimization.

Roadmap.weight_time returns fastest route Roadmap.weight_space returns shortest route
Roadmap.weight_cost returns cheapest route Roadmap.weight_co2 retruns least pollutant route

halem.HALEM_space(start, stop, t0, vmax, Roadmap)
Implementation of the function HALEM_func() for the shortest route.

start: (lon, lat) coordinates of the start location stop: (lon, lat) coordinates of the destination location t0: string
that indcates the departure time

(‘day’/’month’/’year’ ‘hour’:’minute’:’seconds’)

vmax: (N (rows) * M (columns)) numpy array that indicates the sailing velocity in deep water.

For which N is the number of discretisations in the load factor, and M is the number of discretisations
in the dynamic sailing velocity

For the optimization type cost and co2 N must be larger or equal to 2.

Roadmap: Preprocessing file that contains the hydrodynamic properties.

halem.HALEM_time(start, stop, t0, vmax, Roadmap)
Implementation of the function HALEM_func() for the fastest route.

start: (lon, lat) coordinates of the start location stop: (lon, lat) coordinates of the destination location t0: string
that indcates the departure time

(‘day’/’month’/’year’ ‘hour’:’minute’:’seconds’)

vmax: (N (rows) * M (columns)) numpy array that indicates the sailing velocity in deep water.

For which N is the number of discretisations in the load factor, and M is the number of discretisations
in the dynamic sailing velocity

For the optimization type cost and co2 N must be larger or equal to 2.

Roadmap: Preprocessing file that contains the hydrodynamic properties.

halem.plot_timeseries(path, time, Roadmap, Color='r', range_CP=5)
This function can plot the time series for the route and shows a contourplot of the unsaiable areas of that route.

path: lon, lat coordinates of the route.
This is in the format of the output from halem.HALEM_func[0]

time: time series of the path.
This is in the format of the output from halem.HALEM_func[1]

Roadmap: Roadmap that is used to calculate the route. Color: Color of the plot of the time series.

Type sting, with matplotlib color

1.1. HALEM 5

halem Documentation, Release stable

1.2 Contributing

Welcome to HALEM contributor’s guide.

This document focuses on getting any potential contributor familiarized with the development processes, but other
kinds of contributions are also appreciated.

If you are new to using git or have never collaborated in a project previously, please have a look at contribution-
guide.org. Other resources are also listed in the excellent guide created by FreeCodeCamp1.

Please notice, all users and contributors are expected to be open, considerate, reasonable, and respectful. When in
doubt, Python Software Foundation’s Code of Conduct is a good reference in terms of behavior guidelines.

1.2.1 Issue Reports

If you experience bugs or general issues with HALEM, please have a look on the issue tracker. If you don’t see anything
useful there, please feel free to fire an issue report.

Tip: Please don’t forget to include the closed issues in your search. Sometimes a solution was already reported, and
the problem is considered solved.

New issue reports should include information about your programming environment (e.g., operating system, Python
version) and steps to reproduce the problem. Please try also to simplify the reproduction steps to a very minimal
example that still illustrates the problem you are facing. By removing other factors, you help us to identify the root
cause of the issue.

1.2.2 Documentation Improvements

You can help improve HALEM docs by making them more readable and coherent, or by adding missing information and
correcting mistakes.

HALEM documentation uses Sphinx as its main documentation compiler. This means that the docs are kept in the same
repository as the project code, and that any documentation update is done in the same way was a code contribution.

When working on documentation changes in your local machine, you can compile them using tox:

tox -e docs

and use Python’s built-in web server for a preview in your web browser (http://localhost:8000):

python3 -m http.server --directory 'docs/_build/html'

1 Even though, these resources focus on open source projects and communities, the general ideas behind collaborating with other developers to
collectively create software are general and can be applied to all sorts of environments, including private companies and proprietary code bases.

6 Chapter 1. Contents

https://opensource.guide/how-to-contribute
https://opensource.guide/how-to-contribute
https://git-scm.com
https://www.contribution-guide.org/
https://www.contribution-guide.org/
https://github.com/FreeCodeCamp/how-to-contribute-to-open-source
https://www.python.org/psf/conduct/
https://github.com/\T1\textless {}USERNAME\T1\textgreater {}/halem/issues
https://www.sphinx-doc.org/en/master/
https://tox.wiki/en/stable/

halem Documentation, Release stable

1.2.3 Code Contributions

Submit an issue

Before you work on any non-trivial code contribution it’s best to first create a report in the issue tracker to start a
discussion on the subject. This often provides additional considerations and avoids unnecessary work.

Create an environment

Before you start coding, we recommend creating an isolated virtual environment to avoid any problems with your
installed Python packages. This can easily be done via either virtualenv:

virtualenv <PATH TO VENV>
source <PATH TO VENV>/bin/activate

or Miniconda:

conda create -n halem python=3 six virtualenv pytest pytest-cov
conda activate halem

Clone the repository

1. Create an user account on GitHub if you do not already have one.

2. Fork the project repository: click on the Fork button near the top of the page. This creates a copy of the code
under your account on GitHub.

3. Clone this copy to your local disk:

git clone git@github.com:YourLogin/halem.git
cd halem

4. You should run:

pip install -U pip setuptools -e .

to be able to import the package under development in the Python REPL.

5. Install pre-commit:

pip install pre-commit
pre-commit install

HALEM comes with a lot of hooks configured to automatically help the developer to check the code being written.

1.2. Contributing 7

https://github.com/\T1\textless {}USERNAME\T1\textgreater {}/halem/issues
https://realpython.com/python-virtual-environments-a-primer/
https://virtualenv.pypa.io/en/stable/
https://docs.conda.io/en/latest/miniconda.html
https://github.com/\T1\textless {}USERNAME\T1\textgreater {}/halem
https://pre-commit.com/

halem Documentation, Release stable

Implement your changes

1. Create a branch to hold your changes:

git checkout -b my-feature

and start making changes. Never work on the main branch!

2. Start your work on this branch. Don’t forget to add docstrings to new functions, modules and classes, especially
if they are part of public APIs.

3. Add yourself to the list of contributors in AUTHORS.rst.

4. When you’re done editing, do:

git add <MODIFIED FILES>
git commit

to record your changes in git.

Please make sure to see the validation messages from pre-commit and fix any eventual issues. This should
automatically use flake8/black to check/fix the code style in a way that is compatible with the project.

Important: Don’t forget to add unit tests and documentation in case your contribution adds an additional feature
and is not just a bugfix.

Moreover, writing a descriptive commit message is highly recommended. In case of doubt, you can check the
commit history with:

git log --graph --decorate --pretty=oneline --abbrev-commit --all

to look for recurring communication patterns.

5. Please check that your changes don’t break any unit tests with:

tox

(after having installed tox with pip install tox or pipx).

You can also use tox to run several other pre-configured tasks in the repository. Try tox -av to see a list of the
available checks.

Submit your contribution

1. If everything works fine, push your local branch to GitHub with:

git push -u origin my-feature

2. Go to the web page of your fork and click “Create pull request” to send your changes for review.

8 Chapter 1. Contents

https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html
https://git-scm.com
https://pre-commit.com/
https://flake8.pycqa.org/en/stable/
https://pypi.org/project/black/
https://chris.beams.io/posts/git-commit
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/

halem Documentation, Release stable

Troubleshooting

The following tips can be used when facing problems to build or test the package:

1. Make sure to fetch all the tags from the upstream repository. The command git describe --abbrev=0
--tags should return the version you are expecting. If you are trying to run CI scripts in a fork repository,
make sure to push all the tags. You can also try to remove all the egg files or the complete egg folder, i.e., .eggs,
as well as the *.egg-info folders in the src folder or potentially in the root of your project.

2. Sometimes tox misses out when new dependencies are added, especially to setup.cfg and docs/
requirements.txt. If you find any problems with missing dependencies when running a command with tox,
try to recreate the tox environment using the -r flag. For example, instead of:

tox -e docs

Try running:

tox -r -e docs

3. Make sure to have a reliable tox installation that uses the correct Python version (e.g., 3.7+). When in doubt
you can run:

tox --version
OR
which tox

If you have trouble and are seeing weird errors upon running tox, you can also try to create a dedicated virtual
environment with a tox binary freshly installed. For example:

virtualenv .venv
source .venv/bin/activate
.venv/bin/pip install tox
.venv/bin/tox -e all

4. Pytest can drop you in an interactive session in the case an error occurs. In order to do that you need to pass
a --pdb option (for example by running tox -- -k <NAME OF THE FALLING TEST> --pdb). You can also
setup breakpoints manually instead of using the --pdb option.

1.2.4 Maintainer tasks

Releases

If you are part of the group of maintainers and have correct user permissions on PyPI, the following steps can be used
to release a new version for HALEM:

1. Make sure all unit tests are successful.

2. Tag the current commit on the main branch with a release tag, e.g., v1.2.3.

3. Push the new tag to the upstream repository, e.g., git push upstream v1.2.3

4. Clean up the dist and build folders with tox -e clean (or rm -rf dist build) to avoid confusion with
old builds and Sphinx docs.

5. Run tox -e build and check that the files in dist have the correct version (no .dirty or git hash) according
to the git tag. Also check the sizes of the distributions, if they are too big (e.g., > 500KB), unwanted clutter may
have been accidentally included.

1.2. Contributing 9

https://github.com/\T1\textless {}USERNAME\T1\textgreater {}/halem
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://tox.wiki/en/stable/
https://docs.pytest.org/en/stable/usage.html#dropping-to-pdb-python-debugger-at-the-start-of-a-test
https://pypi.org/
https://github.com/\T1\textless {}USERNAME\T1\textgreater {}/halem
https://git-scm.com
https://git-scm.com

halem Documentation, Release stable

6. Run tox -e publish -- --repository pypi and check that everything was uploaded to PyPI correctly.

1.3 License

The MIT License (MIT)

Copyright (c) 2022 Van Oord

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.4 Credits

1.4.1 Development Lead

• Pieter van Halem

1.4.2 Collaboration

A special thanks to the following devellopers for contibuting to this package:

• Gerben de Boer

• Mark van Koningsveld

• Joris den Uijl

• Fedor Baart

1.5 History

1.5.1 1.0.0 (2022-08-31)

• Refactored app

• Added BaseRoadmap ABC

• Added Notebooks

10 Chapter 1. Contents

https://pypi.org/
https://github.com/Pietervanhalem
https://github.com/GerbenJdeBoer
https://www.tudelft.nl/citg/over-faculteit/afdelingen/hydraulic-engineering/sections/rivers-ports-waterways-and-dredging-engineering/staff/van-koningsveld-m/
https://github.com/uijl
https://github.com/SiggyF

halem Documentation, Release stable

1.5.2 0.3.1 (2019-08-08)

• Eight tag on GitHub

• clean-up

• Graduation version

1.5.3 0.3.0 (2019-08-08)

• Seventh tag on GitHub

• Released to Zenodo

• Documentation available on halem.readthedocs.io

1.5.4 0.2.0 (2019-06-27)

• Sixth tag on GitHub

• First mayor update

1.5.5 v0.1.0 (2019-05-21)

• Fifth tag on GitHub

1.5.6 v0.1.3 (2019-05-24)

• Fourth tag on GitHub

1.5.7 v0.1.2 (2019-05-22)

• Third tag on GitHub

1.5.8 v0.1.1 (2019-05-21)

• second tag on GitHub

1.5.9 v0.1.0 (2019-05-21)

• First tag on GitHub

• First release to PyPI

1.5. History 11

halem Documentation, Release stable

1.6 halem

1.6.1 halem package

Submodules

halem.functions module

halem.functions.HALEM_co2(start, stop, t0, vmax, Roadmap)
Implementation of the function HALEM_func() for the least pollutant route.

start: (lon, lat) coordinates of the start location stop: (lon, lat) coordinates of the destination location t0: string
that indcates the departure time

(‘day’/’month’/’year’ ‘hour’:’minute’:’seconds’)

vmax: (N (rows) * M (columns)) numpy array that indicates the sailing velocity in deep water.

For which N is the number of discretisations in the load factor, and M is the number of discretisations
in the dynamic sailing velocity

For the optimization type cost and co2 N must be larger or equal to 2.

Roadmap: Preprocessing file that contains the hydrodynamic properties.

halem.functions.HALEM_cost(start, stop, t0, vmax, Roadmap)
Implementation of the function HALEM_func() for the cheapest route.

start: (lon, lat) coordinates of the start location stop: (lon, lat) coordinates of the destination location t0: string
that indcates the departure time

(‘day’/’month’/’year’ ‘hour’:’minute’:’seconds’)

vmax: (N (rows) * M (columns)) numpy array that indicates the sailing velocity in deep water.

For which N is the number of discretisations in the load factor, and M is the number of discretisations
in the dynamic sailing velocity

For the optimization type cost and co2 N must be larger or equal to 2.

Roadmap: Preprocessing file that contains the hydrodynamic properties.

halem.functions.HALEM_func(start, stop, t0, vmax, Roadmap, costfunction)
Base of the functions HALEM_time, HALEM_cost, HALEM_space, HALEM_co2. This function takes the
pre-processing file, start location, stop location, departure time, and sailing velocity and returns the optimized
route.

start: (lon, lat) coordinates of the start location stop: (lon, lat) coordinates of the destination location t0: string
that indcates the departure time

(‘day’/’month’/’year’ ‘hour’:’minute’:’seconds’)

vmax: (N (rows) * M (columns)) numpy array that indicates the sailing velocity in deep water.

For which N is the number of discretisations in the load factor, and M is the number of discretisations
in the dynamic sailing velocity

For the optimization type cost and co2 N must be larger or equal to 2.

Roadmap: Preprocessing file that contains the hydrodynamic properties. costfunction Costfunction of the route
optimization.

12 Chapter 1. Contents

halem Documentation, Release stable

Roadmap.weight_time returns fastest route Roadmap.weight_space returns shortest route
Roadmap.weight_cost returns cheapest route Roadmap.weight_co2 retruns least pollutant route

halem.functions.HALEM_space(start, stop, t0, vmax, Roadmap)
Implementation of the function HALEM_func() for the shortest route.

start: (lon, lat) coordinates of the start location stop: (lon, lat) coordinates of the destination location t0: string
that indcates the departure time

(‘day’/’month’/’year’ ‘hour’:’minute’:’seconds’)

vmax: (N (rows) * M (columns)) numpy array that indicates the sailing velocity in deep water.

For which N is the number of discretisations in the load factor, and M is the number of discretisations
in the dynamic sailing velocity

For the optimization type cost and co2 N must be larger or equal to 2.

Roadmap: Preprocessing file that contains the hydrodynamic properties.

halem.functions.HALEM_time(start, stop, t0, vmax, Roadmap)
Implementation of the function HALEM_func() for the fastest route.

start: (lon, lat) coordinates of the start location stop: (lon, lat) coordinates of the destination location t0: string
that indcates the departure time

(‘day’/’month’/’year’ ‘hour’:’minute’:’seconds’)

vmax: (N (rows) * M (columns)) numpy array that indicates the sailing velocity in deep water.

For which N is the number of discretisations in the load factor, and M is the number of discretisations
in the dynamic sailing velocity

For the optimization type cost and co2 N must be larger or equal to 2.

Roadmap: Preprocessing file that contains the hydrodynamic properties.

halem.functions.costfunction_spaceseries(edge, V_max, WD_min, flow, WVPI, L, tria)
Function that returns the time series of the weights of a specifiv edge.

edge: (int) cosidered edge. edge: index of the location node
in Roadmap.nodes

V_max: Shipping velocity in deep water in meters per second WD_min: minimal needed draft in meters flow:
Class that contains the hydrodynamic conditions WVPI: Weight of the vessel in tf L: (int) number of neighbouring
layers. tria: triangulation of the nodes (output of scipy.spatial.Delaunay(nodes)

halem.functions.costfunction_timeseries(edge, V_max, WD_min, flow, WVPI, L, tria)
Function that returns the time series of the weights of a specific edge.

edge: (int) cosidered edge. edge: index of the location node
in Roadmap.nodes

V_max: Shipping velocity in deep water in meters per second WD_min: minimal needed draft in meters flow:
Class that contains the hydrodynamic conditions WVPI: Weight of the vessel in tf L: (int) number of neighbouring
layers. tria: triangulation of the nodes (output of scipy.spatial.Delaunay(nodes)

halem.functions.find_neighbors(pindex, triang)
Function that can find the neighbours of a Delauney mesh.

pindex: Index of the considered node. triang: Triangulation generated with scipy.spatial.Delaunay()

1.6. halem 13

halem Documentation, Release stable

halem.functions.find_neighbors2(index, triang, depth)
Function that can find the neighbours of a Delauney mesh, for multiple layers of neighbours.

pindex: Index of the considered node. triang: Triangulation generated with scipy.spatial.Delaunay() Depth:
Number of neigbouring layers (nb)

halem.functions.haversine(coord1, coord2)
use the Haversine function to determine the distance between two points in the WGS84 coordinate
system. Returns the distance between the two points in meters. Source: https://janakiev.com/blog/
gps-points-distance-python/

coord1: (lat, lon) coordinates of first point coord2: (lat, lon) coordinates of second point

halem.functions.inbetweenpoints(start, stop, LL, tria)
This node returns the nodes of influence for a specific arc. This function retruns the start and stop node plus the
nodes in between the start and stop node. This function makes sure the route does not jump over hydrodynamic
features when the neightbouring layers are higher than one.

start: (int) index of the start node stop: (int) index of the destination node LL: (int) number of neighbouring
layers. tria: triangulation of the nodes (output of scipy.spatial.Delaunay(nodes)

halem.functions.plot_timeseries(path, time, Roadmap, Color='r', range_CP=5)
This function can plot the time series for the route and shows a contourplot of the unsaiable areas of that route.

path: lon, lat coordinates of the route.
This is in the format of the output from halem.HALEM_func[0]

time: time series of the path.
This is in the format of the output from halem.HALEM_func[1]

Roadmap: Roadmap that is used to calculate the route. Color: Color of the plot of the time series.

Type sting, with matplotlib color

halem.functions.squat(h, T, V_max, LWL, WWL, ukc, WVPI)
Function for reducing the sailing velocity in deep water to the sailing velocity in shallow unconfined waters.

h: Array of the water depth in meters V_max: Sailing velocity in deep water in meters per second WWL: Width
over Water Line of the vessel in meters LWL: Length over Water Line of the vessel in meters ukc: Minimal
needed under keel clearance in meters. T: numpy array with the draft of the vessel. Numpy

array has the shape of the number of discretisations in the dynamic sailing velocity in meters

WVPI: total weight of the the vessel in tf

V: Array of sailing velocities reduced for squat,
corresponding to the input arrat h.

halem.path_finder module

class halem.path_finder.PathFinder(start, stop, Roadmap, t0, graph_functions)
Bases: object

This class contains the code for calculating the optimal route from the Roadmap

start: start location (lat, lon) stop: destination location (lat, lon) Roadmap: Preprocessing file graph_functions:
class that selects the correct weights from the Roadmap.

dijsktra(Roadmap, initial, end, t0, graph_functions)

14 Chapter 1. Contents

https://janakiev.com/blog/gps-points-distance-python/
https://janakiev.com/blog/gps-points-distance-python/
https://docs.python.org/3.8/library/functions.html#object

halem Documentation, Release stable

find_k_repeat(t, ts)

find_k_time(t, ts)

find_startstop(start, nodes)

halem.roadmap module

class halem.roadmap.BaseRoadmap(number_of_neighbor_layers, vship, WD_min, WVPI, repeat=False,
WWL=20, LWL=80, ukc=1.5, optimization_type=None,
nodes_index=None, *args, **kwargs)

Bases: ABC, NodeReduction

Absctract Base class for the Roadmap.

Pre-processing function for the HALEM optimizations. In this fucntion the hydrodynamic model and the vessel
properties are transformed into weights for the Time dependend Dijkstra function.

number_of_neighbor_layers: number of neigbouring layers for which edges are
created. increasing this number results in a higher directional resolution.

vship: (N (rows) * M (columns)) numpy array that indicates the sailing velocity
in deep water. For which N is the number of discretisations in the load factor, and M is the number of
discretisations in the dynamic sailing velocity. For the optimization type cost and co2 N must be larger or
equal to 2.

WD_min: numpy array with the draft of the vessel.
Numpy array has the shape of the number of discretisations in the dynamic sailing velocity

WVPI: Numpy array with the total weight of the vessel.

WWL: Width over Water Line of the vessel in meters

LWL: Length over Water Line of the vessel in meters

ukc: Minimal needed under keel clearance in meters.

repeat: Indicator if the roadmap can be repeated (True / False)
True for hydrodynamic models based on a tidal analysis

optimization_type: list of optimization types.
Excluding one or more not needed optimization types can significantly decrease the size of the preprocess-
ing file

nodes_index: Numpy array that contains the indices of the nodes of the reduced
hydrodynamic model. nodes_index is the output of Roadmap.nodes_index. This option allows you to skip
the node reduction step if this is already done.

calc_weights_time(edge, i, j, vship, WD_min, WVPI, self_f, compute_cost, compute_co2,
number_of_neighbor_layers)

Function that retruns the weight of an arc

static compute_co2(travel_time, speed)
Default cost function for co2.

static compute_cost(travel_time, speed)
Default cost function for price.

static fifo_maker(y, N1)
Makes a FIFO time series from a Non-FIFO time series y: Time series N1: Mask file of the time series

1.6. halem 15

https://docs.python.org/3.8/library/abc.html#abc.ABC

halem Documentation, Release stable

abstract load()

load_hydrodynamic()

static nodes_on_land(nodes, u, v, WD)
Standard function that returns itself

parse()

class halem.roadmap.Graph

Bases: object

class that contains the nodes, arcs, and weights for the time-dependent, directional, weighted, and
Non-FIFO graph of the route optimization problem. This class is used multiple times in the
halem.mesh_maker.GraphFlowModel() function

add_edge(from_node, to_node, weight)

class halem.roadmap.NodeReduction(dx_min, blend, nl, *args, **kwargs)
Bases: object

This class can reduce the number of gridpoints of the hydrodynamic model. This is done based on the vorticity
and the magnitude of the flow. The nodes are pruned based on a length scale. The formula for this length scale
is: LS / min = (1+|×u|)^c+(1)(1+|u|)^m. With: LS = resulting length scale, = blend factor between the curl and
the magnitude method, min = minimal length scale, c = non linearity parameter for the method with the curl of
the flow, m = non linearity parameter for the method with the magnitude of the flow, and u = the velocity vector
of the flow.

flow: class that contains the hydrodynamic properties.
class must have the following instances. u: numpy array with shape (N, M) v: numpy array with shape
(N, M) WD: numpy array with shape (N, M) nodes: numpy array with shape (N, 2) (lat, lon) t: numpy
array with shape M (seconds since 01-01-1970 00:00:00) tria: triangulation of the nodes (output of
scipy.spatial.Delaunay) in which N is the number of nodes of the hydrodynamic model, and M is the number
of time steps of the hydrodynamic model

dx_min: float, minimal spatial resolution.
Parameter of the lengt scale function concerning the node reduction

blend: blend factor between the verticity and magnitude of the flow.
Parameter of the lengt scale function concerning the node reduction

nl: float (nl_c, nl_m)
Non linearity factor consisting out of two numbers nl_c non-linearity factor for the corticity, nl_m non-
linearity factor for the magnitude of the flow. Parameter of the lengt scale function concerning the node
reduction

number_of_neighbor_layers: number of neigbouring layers for which edges are
created. increasing this number results in a higher directional resolution.

static closest_node(node, nodes, node_list)
Finds the closest node for a subset of nodes in a set of node.

based on WGS84 coordinates.

node: considered node nodes: indices of the subset node_list: total list of the nodes

curl_func(node)
Determine the curl of the grid.

16 Chapter 1. Contents

https://docs.python.org/3.8/library/functions.html#object
https://docs.python.org/3.8/library/functions.html#object

halem Documentation, Release stable

get_nodes()

Reduce the number of gridpoints of the hydrodynamic model.

length_scale(node)
Determine the lengthscale of the grid.

slope(xs, ys, zs)
Function for the slope of a plane in x and y direction. Used to calculate the curl of the flow for the node
reduction step

Module contents

class halem.BaseRoadmap(number_of_neighbor_layers, vship, WD_min, WVPI, repeat=False, WWL=20,
LWL=80, ukc=1.5, optimization_type=None, nodes_index=None, *args, **kwargs)

Bases: ABC, NodeReduction

Absctract Base class for the Roadmap.

Pre-processing function for the HALEM optimizations. In this fucntion the hydrodynamic model and the vessel
properties are transformed into weights for the Time dependend Dijkstra function.

number_of_neighbor_layers: number of neigbouring layers for which edges are
created. increasing this number results in a higher directional resolution.

vship: (N (rows) * M (columns)) numpy array that indicates the sailing velocity
in deep water. For which N is the number of discretisations in the load factor, and M is the number of
discretisations in the dynamic sailing velocity. For the optimization type cost and co2 N must be larger or
equal to 2.

WD_min: numpy array with the draft of the vessel.
Numpy array has the shape of the number of discretisations in the dynamic sailing velocity

WVPI: Numpy array with the total weight of the vessel.

WWL: Width over Water Line of the vessel in meters

LWL: Length over Water Line of the vessel in meters

ukc: Minimal needed under keel clearance in meters.

repeat: Indicator if the roadmap can be repeated (True / False)
True for hydrodynamic models based on a tidal analysis

optimization_type: list of optimization types.
Excluding one or more not needed optimization types can significantly decrease the size of the preprocess-
ing file

nodes_index: Numpy array that contains the indices of the nodes of the reduced
hydrodynamic model. nodes_index is the output of Roadmap.nodes_index. This option allows you to skip
the node reduction step if this is already done.

calc_weights_time(edge, i, j, vship, WD_min, WVPI, self_f, compute_cost, compute_co2,
number_of_neighbor_layers)

Function that retruns the weight of an arc

static compute_co2(travel_time, speed)
Default cost function for co2.

1.6. halem 17

https://docs.python.org/3.8/library/abc.html#abc.ABC

halem Documentation, Release stable

static compute_cost(travel_time, speed)
Default cost function for price.

static fifo_maker(y, N1)
Makes a FIFO time series from a Non-FIFO time series y: Time series N1: Mask file of the time series

abstract load()

load_hydrodynamic()

static nodes_on_land(nodes, u, v, WD)
Standard function that returns itself

parse()

halem.HALEM_co2(start, stop, t0, vmax, Roadmap)
Implementation of the function HALEM_func() for the least pollutant route.

start: (lon, lat) coordinates of the start location stop: (lon, lat) coordinates of the destination location t0: string
that indcates the departure time

(‘day’/’month’/’year’ ‘hour’:’minute’:’seconds’)

vmax: (N (rows) * M (columns)) numpy array that indicates the sailing velocity in deep water.

For which N is the number of discretisations in the load factor, and M is the number of discretisations
in the dynamic sailing velocity

For the optimization type cost and co2 N must be larger or equal to 2.

Roadmap: Preprocessing file that contains the hydrodynamic properties.

halem.HALEM_cost(start, stop, t0, vmax, Roadmap)
Implementation of the function HALEM_func() for the cheapest route.

start: (lon, lat) coordinates of the start location stop: (lon, lat) coordinates of the destination location t0: string
that indcates the departure time

(‘day’/’month’/’year’ ‘hour’:’minute’:’seconds’)

vmax: (N (rows) * M (columns)) numpy array that indicates the sailing velocity in deep water.

For which N is the number of discretisations in the load factor, and M is the number of discretisations
in the dynamic sailing velocity

For the optimization type cost and co2 N must be larger or equal to 2.

Roadmap: Preprocessing file that contains the hydrodynamic properties.

halem.HALEM_func(start, stop, t0, vmax, Roadmap, costfunction)
Base of the functions HALEM_time, HALEM_cost, HALEM_space, HALEM_co2. This function takes the
pre-processing file, start location, stop location, departure time, and sailing velocity and returns the optimized
route.

start: (lon, lat) coordinates of the start location stop: (lon, lat) coordinates of the destination location t0: string
that indcates the departure time

(‘day’/’month’/’year’ ‘hour’:’minute’:’seconds’)

vmax: (N (rows) * M (columns)) numpy array that indicates the sailing velocity in deep water.

For which N is the number of discretisations in the load factor, and M is the number of discretisations
in the dynamic sailing velocity

For the optimization type cost and co2 N must be larger or equal to 2.

18 Chapter 1. Contents

halem Documentation, Release stable

Roadmap: Preprocessing file that contains the hydrodynamic properties. costfunction Costfunction of the route
optimization.

Roadmap.weight_time returns fastest route Roadmap.weight_space returns shortest route
Roadmap.weight_cost returns cheapest route Roadmap.weight_co2 retruns least pollutant route

halem.HALEM_space(start, stop, t0, vmax, Roadmap)
Implementation of the function HALEM_func() for the shortest route.

start: (lon, lat) coordinates of the start location stop: (lon, lat) coordinates of the destination location t0: string
that indcates the departure time

(‘day’/’month’/’year’ ‘hour’:’minute’:’seconds’)

vmax: (N (rows) * M (columns)) numpy array that indicates the sailing velocity in deep water.

For which N is the number of discretisations in the load factor, and M is the number of discretisations
in the dynamic sailing velocity

For the optimization type cost and co2 N must be larger or equal to 2.

Roadmap: Preprocessing file that contains the hydrodynamic properties.

halem.HALEM_time(start, stop, t0, vmax, Roadmap)
Implementation of the function HALEM_func() for the fastest route.

start: (lon, lat) coordinates of the start location stop: (lon, lat) coordinates of the destination location t0: string
that indcates the departure time

(‘day’/’month’/’year’ ‘hour’:’minute’:’seconds’)

vmax: (N (rows) * M (columns)) numpy array that indicates the sailing velocity in deep water.

For which N is the number of discretisations in the load factor, and M is the number of discretisations
in the dynamic sailing velocity

For the optimization type cost and co2 N must be larger or equal to 2.

Roadmap: Preprocessing file that contains the hydrodynamic properties.

halem.plot_timeseries(path, time, Roadmap, Color='r', range_CP=5)
This function can plot the time series for the route and shows a contourplot of the unsaiable areas of that route.

path: lon, lat coordinates of the route.
This is in the format of the output from halem.HALEM_func[0]

time: time series of the path.
This is in the format of the output from halem.HALEM_func[1]

Roadmap: Roadmap that is used to calculate the route. Color: Color of the plot of the time series.

Type sting, with matplotlib color

1.6. halem 19

halem Documentation, Release stable

20 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

21

halem Documentation, Release stable

22 Chapter 2. Indices and tables

PYTHON MODULE INDEX

h
halem, 17
halem.functions, 12
halem.path_finder, 14
halem.roadmap, 15

23

halem Documentation, Release stable

24 Python Module Index

INDEX

A
add_edge() (halem.roadmap.Graph method), 16

B
BaseRoadmap (class in halem), 3, 17
BaseRoadmap (class in halem.roadmap), 15

C
calc_weights_time() (halem.BaseRoadmap method),

3, 17
calc_weights_time() (halem.roadmap.BaseRoadmap

method), 15
closest_node() (halem.roadmap.NodeReduction static

method), 16
compute_co2() (halem.BaseRoadmap static method), 4,

17
compute_co2() (halem.roadmap.BaseRoadmap static

method), 15
compute_cost() (halem.BaseRoadmap static method),

4, 17
compute_cost() (halem.roadmap.BaseRoadmap static

method), 15
costfunction_spaceseries() (in module

halem.functions), 13
costfunction_timeseries() (in module

halem.functions), 13
curl_func() (halem.roadmap.NodeReduction method),

16

D
dijsktra() (halem.path_finder.PathFinder method), 14

F
fifo_maker() (halem.BaseRoadmap static method), 4,

18
fifo_maker() (halem.roadmap.BaseRoadmap static

method), 15
find_k_repeat() (halem.path_finder.PathFinder

method), 14
find_k_time() (halem.path_finder.PathFinder

method), 15

find_neighbors() (in module halem.functions), 13
find_neighbors2() (in module halem.functions), 13
find_startstop() (halem.path_finder.PathFinder

method), 15

G
get_nodes() (halem.roadmap.NodeReduction method),

16
Graph (class in halem.roadmap), 16

H
halem

module, 3, 17
halem.functions

module, 12
halem.path_finder

module, 14
halem.roadmap

module, 15
HALEM_co2() (in module halem), 4, 18
HALEM_co2() (in module halem.functions), 12
HALEM_cost() (in module halem), 4, 18
HALEM_cost() (in module halem.functions), 12
HALEM_func() (in module halem), 4, 18
HALEM_func() (in module halem.functions), 12
HALEM_space() (in module halem), 5, 19
HALEM_space() (in module halem.functions), 13
HALEM_time() (in module halem), 5, 19
HALEM_time() (in module halem.functions), 13
haversine() (in module halem.functions), 14

I
inbetweenpoints() (in module halem.functions), 14

L
length_scale() (halem.roadmap.NodeReduction

method), 17
load() (halem.BaseRoadmap method), 4, 18
load() (halem.roadmap.BaseRoadmap method), 15
load_hydrodynamic() (halem.BaseRoadmap method),

4, 18

25

halem Documentation, Release stable

load_hydrodynamic() (halem.roadmap.BaseRoadmap
method), 16

M
module
halem, 3, 17
halem.functions, 12
halem.path_finder, 14
halem.roadmap, 15

N
NodeReduction (class in halem.roadmap), 16
nodes_on_land() (halem.BaseRoadmap static method),

4, 18
nodes_on_land() (halem.roadmap.BaseRoadmap

static method), 16

P
parse() (halem.BaseRoadmap method), 4, 18
parse() (halem.roadmap.BaseRoadmap method), 16
PathFinder (class in halem.path_finder), 14
plot_timeseries() (in module halem), 5, 19
plot_timeseries() (in module halem.functions), 14

S
slope() (halem.roadmap.NodeReduction method), 17
squat() (in module halem.functions), 14

26 Index

	Contents
	HALEM
	Module contents

	Contributing
	Issue Reports
	Documentation Improvements
	Code Contributions
	Submit an issue
	Create an environment
	Clone the repository
	Implement your changes
	Submit your contribution
	Troubleshooting

	Maintainer tasks
	Releases

	License
	Credits
	Development Lead
	Collaboration

	History
	1.0.0 (2022-08-31)
	0.3.1 (2019-08-08)
	0.3.0 (2019-08-08)
	0.2.0 (2019-06-27)
	v0.1.0 (2019-05-21)
	v0.1.3 (2019-05-24)
	v0.1.2 (2019-05-22)
	v0.1.1 (2019-05-21)
	v0.1.0 (2019-05-21)

	halem
	halem package
	Submodules
	halem.functions module
	halem.path_finder module
	halem.roadmap module
	Module contents

	Indices and tables
	Python Module Index
	Index

